Edit file File name : numbers.cpython-38.pyc Content :U �;rc( � @ s� d Z ddlmZmZ dddddgZG dd� ded �ZG d d� de�Ze�e� G dd� de�Z e �e � G dd� de �ZG d d� de�Ze�e � dS )z~Abstract Base Classes (ABCs) for numbers, according to PEP 3141. TODO: Fill out more detailed documentation on the operators.� )�ABCMeta�abstractmethod�Number�Complex�Real�Rational�Integralc @ s e Zd ZdZdZdZdS )r z�All numbers inherit from this class. If you just want to check if an argument x is a number, without caring what kind, use isinstance(x, Number). � N)�__name__� __module__�__qualname__�__doc__� __slots__�__hash__r r r �/usr/lib/python3.8/numbers.pyr s )� metaclassc @ s� e Zd ZdZdZedd� �Zdd� Zeedd� ��Z eed d � ��Z edd� �Zed d� �Zedd� �Z edd� �Zdd� Zdd� Zedd� �Zedd� �Zedd� �Zedd� �Zedd � �Zed!d"� �Zed#d$� �Zed%d&� �Zed'd(� �Zd)S )*r ab Complex defines the operations that work on the builtin complex type. In short, those are: a conversion to complex, .real, .imag, +, -, *, /, abs(), .conjugate, ==, and !=. If it is given heterogeneous arguments, and doesn't have special knowledge about them, it should fall back to the builtin complex type as described below. r c C s dS )z<Return a builtin complex instance. Called for complex(self).Nr ��selfr r r �__complex__- s zComplex.__complex__c C s | dkS )z)True if self != 0. Called for bool(self).r r r r r r �__bool__1 s zComplex.__bool__c C s t �dS )zXRetrieve the real component of this number. This should subclass Real. N��NotImplementedErrorr r r r �real5 s zComplex.realc C s t �dS )z]Retrieve the imaginary component of this number. This should subclass Real. Nr r r r r �imag>